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he methods employed to perform rotordynamics calculations of
ndustrial machines are rather standard and usually allow fore-
asting the dynamic behavior of the considered machines. Any-
ow, in some cases, in order to obtain high level of accuracy, the
odel has to be updated to fit experimental results, and standard
odeling methods have to be improved. In this paper, the updat-

ng of the torsional model of a steam turbogenerator is presented.
n order to fit the eigenfrequencies calculated using the standard
odel and the natural frequencies measured on-field, a modeling

mprovement is proposed, considering partially the dynamics of
he components usually modeled as rigid disks. The proposed
ethod has also the aim to preserve the physical meaning of the
odel. Finally, the new model is updated, and a very good fitting

s obtained between eigenfrequencies and experimental natural
requencies. �DOI: 10.1115/1.4000287�

eywords: rotordynamic, model updating, torsional vibrations,
atural frequencies

Introduction
During the operation of rotating machinery used in power-

lants, some anomalies, such as electric faults, unusual conditions,
r asymmetries in arc admission of steam in the turbine, can ex-
ite torsional vibrations. This condition is rather dangerous be-
ause normally torsional vibrations are not monitored. Moreover,
f the torsional vibrations are characterized by frequencies closely
elated to blade row natural frequencies, blade modes could be
xcited with possible consequences on the blade integrity.

Therefore, during the design of the machine, besides the calcu-
ation of flexural eigenfrequencies and eigenmodes, also torsional
nes are often calculated using a finite element model of the rotor
rain �1,2�. These eigenfrequencies are often different from the
atural frequencies measured on-field; this means that in some
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cases the standard modeling method is not accurate enough. A
modified method is proposed here, and the new model is subjected
to a model updating procedure.

In the past decades, different authors studied the model updat-
ing procedure. Friswell and Mottershead �3� gave a fundamental
contribution for structural dynamics. The model updating is gen-
erally based on the minimization of an objective function, which
describes the difference between the model and the real system
and it is characterized by three different aspects. The first one is
the choice of the parameters that are optimized during the updat-
ing: These are the independent variables of the problem. Usually
in rotordynamics uncertainty affects model parameters such as
material properties, stiffness diameters of a generic element, or
mass of a disk.

The second aspect that strongly characterizes the model updat-
ing is the algorithm used for the objective function minimization.
Both mathematical and heuristic-probabilistic methods can be
used to find the function minimum. Mathematical methods are
proposed, for instance, in Refs. �4,5�. Genetic algorithms �GAs�
and simulating annealing �SA� are the most used heuristic meth-
ods in literature Refs. �6–8�.

The last aspect is the objective function. The choice of the
function is strictly related to the parameters that can be experi-
mentally extracted from the real system. The majority of the up-
dating procedures proposed in literature considers both natural
frequencies and mode shapes.

Unfortunately, for the experimental case considered in this
paper—but almost generally for real rotating machinery—it was
not possible to determine any experimental mode of the machine.
Thus the model updating procedure requires the selection of the
parameters to be updated on the basis of a sensitivity analysis and
the setting of some constraints in order to preserve the physical
meaning of the model. The obtained model is of the knowledge-
based type, according to the classification given in Ref. �3� and
the procedure described in Ref. �9�.

2 In-Field Measurement of Torsional Natural Fre-
quencies

The experimental tests were performed in a power plant. The
unit considered was a 200 MW class steam turbogenerator with an
approximate length of 24 m and a weight of 1,020,000 N operat-
ing at 3000 rpm �50 Hz� with one pole-pair generator. Steam ex-
pansion is realized in two different stages: high-intermediate pres-
sure �HP-IP� and low pressure �LP� turbines.

Strain gauges were employed to measure torsional natural fre-
quencies, but their location was constrained by machine layout.
The only region easily accessible during normal machine opera-
tion was the one between the generator and the thrust bearing of
HP-IP turbine, see Fig. 1. Two couples of strain gauges were
placed on both sides of the rigid coupling to form one half-bridge
and one full-bridge.

The signals of the strain gauges were transmitted by means of a
telemetry collar, rigidly connected to the shaft, to a nearby fixed
antenna. The frequency resolution was 0.73 Hz. Four torsional
natural frequencies were determined; the values of which are re-
ported in Table 1.

However, it is possible that not all the actual machine modes in
the operating range were detected. In Sec. 3.3 it is shown that
another eigenmode was present but was not detected. This can be
explained by considering that the available measuring planes were
two; they did not allow detecting the modes in which the measur-
ing planes did not have relative motion. For the same reason, it
was not possible to define also the experimental mode shapes.

It is worthy to note that these problems about modal analysis
are commonly found in real rotating machinery and forces to per-
form modal updating using only data related to natural frequen-

cies and not also to experimental mode shapes.
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Rotor Modeling
Finite elements are used to model the machine presented in Sec.

. First, the standard rotor dynamic method is introduced. The
odel of the shaft is set up using both consistent elements and

umped parameters. Then, the standard method is modified in or-
er to take more accurately into consideration the effects of
laded disks and additional inertias on the eigenfrequencies.

3.1 Standard Torsional Finite Element Modeling. The stan-
ard finite element modeling �FEM� requires the discretization of
he shaft and the result is shown in Fig. 2. Cylindrical parts are

odeled by means of torsional beam elements with one degree of
reedom �DOF� per node. In the modeling, the effects of step
hafting on element stiffness have been accounted for.

The determination of both the inertia and the stiffness matrices

Fig. 1 Strain gauge installation

Table 1 Experimental natural frequencies

Experimental mode
Natural frequency

�Hz�

Mode 1 10.8
Mode 2 27.7
Mode 3 123.5
Mode 4 144.0
74501-2 / Vol. 132, JULY 2010
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is made using Lagrange’s approach; the damping matrix is not
defined because damping is normally negligible in torsional sys-
tems �further details can be found in Refs. �2,10,11��. A reference
frame rotating at the rotating speed is adopted.

For a shaft element i of length li limited by the two end nodes
i and i+1, the mass and stiffness matrices for the finite element
approach can be expressed as �11�

�mi� =
�iImili

6
�2 1

1 2
� �1�

�ki� =
GiIki

li
� 1 − 1

− 1 1
� �2�

where �i and Imi indicate, respectively, the density and the polar
moment of area calculated using the mass diameter of the ith
element, whereas Gi and Iki are the shear modulus and the polar
moment of area of the ith element calculated using the stiffness
diameter. The mass and stiffness matrices of the rotor shaft ele-
ment are called consistent.

In order to take into account elements like bladed disks, fans,
and the inertial effects of the copper bars in the generator/exciter
�Fig. 2� lumped rigid disks are considered. This approach allows
modeling a disk with a concentrated inertia Jdi

located in a general
node i of the shaft-line �Fig. 3�.

Because the disk is considered rigidly connected to a node be-
longing to the centroidal axis, it does not participate to torsional
deformation and its stiffness matrix is not defined.

For a model composed of n−1 finite elements and n nodes, the
vector of the generalized torsional displacement is

��t� = ��1�t�, . . . ,�n�t��T �3�
With this kind of modeling, the inertia matrix of the complete

system �M� has a dimension of n�n and is a tri-diagonal matrix.
On the main diagonal, the term Jdi

is present only if a disk is

Fig. 2 Machine model
considered in the corresponding node.
�M� = 	
1
3�1Im1l1 + Jd1

1
6�1Im1l1 0 ¯ 0

1
6�1Im1l1

1
3�1I1l1 + 1

3�2Im2l2 + Jd2

1
6�2Im2l2 ¯ 0

0 1
6�2Im2l2

1
3�2Im2l2 + 1

3�3Im3l3 + Jd3
¯ 0

¯ ¯ ¯ � ¯

0 0 0 ¯

1
3�nImnln + Jdn


 �4�

The fully assembled model stiffness matrix �K� is easier to define than the inertia one; in this case there are only the terms regarding
he rotor elements. Similar to the inertia matrix �M�, �K� is a tri-diagonal matrix:

�K� = 	
G1Ik1/l1 − G1Ik1/l1 0 ¯ 0

− G1Ik1/l1 G1Ik1/l1 + G2Ik2/l2 − G2Ik2/l2 ¯ 0

0 − G2Ik2/l2 G2Ik2/l2 + G3Ik3/l3 ¯ 0

¯ ¯ ¯ � ¯

0 0 0 ¯ GnIkn/ln


 �5�
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This approach, easy to understand and to implement, has the
isadvantage of a coarse representation of the dynamical behavior
f the disks, especially if blade row modes are present. The con-
equence is that the complete model of rotor may result badly
uned. This notwithstanding the standard method is commonly
sed.

3.2 Modified Torsional Finite Element Modeling. The aim
s to introduce into the model.

�1� The dynamic effects on torsional vibrations due to bladed
row modes without considering a complete 3D FEM of the
row and introducing a huge number of DOFs.

�2� The possible errors of the generator stiffness evaluation
caused by the modeling of the copper bars by means of
additional inertia only. This last modeling is generally per-
formed without distinction for both flexural and torsional
dynamic analyses. In the first case, this is generally correct
because copper bars cause mainly inertial effects and their
bending stiffness is negligible with respect to that of gen-
erator core �bars can also have relative motion in generator
slots�. In the second case, copper bars fill the slots and their
torsional stiffness could be not negligible with respect to
that of generator torsional elements. The consideration of
lumped inertia for the copper bars completely neglects this
aspect.

The proposed method considers an additional DOF for the disk,
hose compliance should be considered, independent of the DOF
f the node in which the disk is geometrically located. For sim-
licity, this corresponds to add an “additional” node in which the
isk inertia is concentrated and which is not coincident with the

Fig. 3 Standard rigid disk
nodes of the shaft elements.

j j li
�

ournal of Engineering for Gas Turbines and Power
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In other words, while in the previous approach the disk was
considered rigidly coupled with the shaft, in this case an addi-
tional node j, for a suitable graphical representation belonging to
the plane orthogonal at the rotational axis and passing through the
ith node, is included in the model �Fig. 4�. The inertia of the disk
is now considered concentrated in the new node, and the connec-
tion between the two nodes is modeled by means of a torsional
spring.

This way, the number of DOFs of the model increases, but can
be at maximum twice than before if a disk is considered per each
node of the model. Moreover, the additional DOF can be used for
some disks only; the dynamic effect of which is more relevant,
while others can still be considered as rigid as before.

Indicating with m the number of the disks modeled by means of
this approach, the vector of the generalized torsional displacement
is

�6�

where n is the number of rotor nodes. Obviously, the DOF vector
expansion also implies the increase in the dimension of fully as-
sembled inertia and stiffness matrices of the system. To easily
understand the changes in system matrices, we will use the new
modeling for a disk only located in correspondence of the second
node. The inertia matrix �M� has a shape similar to that of the
standard modeling one �Eq. �4�; in this case, however, its dimen-
sions have increased, and the concentrated inertia related to the
modified disk is put in the position associated with the additional

Fig. 4 Modified disk
DOF:
�M� = 	
1
3�1Im1l1 + Jd1

1
6�1Im1l1 0 ¯ 0 0

1
6�1Im1l1

1
3�1I1l1 + 1

3�2Im2l2
1
6�2Im2l2 ¯ 0 0

0 1
6�2Im2l2

1
3�2Im2l2 + 1

3�3Im3l3 + Jd3
¯ 0 0

¯ ¯ ¯ � ¯ ¯

0 0 0 ¯

1
3�nImnln + Jdn

0

0 0 0 ¯ 0 Jd2


 �7�

here �M� is a �n+m�� �n+m� tri-diagonal matrix.
Converse to the standard method, the introduction of an additional DOF requires the definition of the connection of the disk to the

haft. This is made by the stiffness matrix of the jth disk that is proportional to the stiffness that characterizes the shaft element at which
he disk is connected �Eq. �2��. Then the jth disk stiffness with respect to the stiffness of the ith element is

�k � = �
GiIki 1 − 1

�8�

− 1 1

�
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On the basis of the DOF vector for the new modeling defined in Eq. �6�, the fully assembled stiffness matrix of the system becomes

�K� = 	
G1Ik1/l1 − G1Ik1/l1 0 ¯ 0 0

− G1Ik1/l1 G1Ik1/l1 + G2Ik2/l2 + � jG2Ik2/l2 − G2Ik2/l2 ¯ 0 − � jG2Ik2/l2

0 − G2Ik2/l2 G2Ik2/l2 + G3Ik3/l3 ¯ 0 0

¯ ¯ ¯ � ¯ ¯

0 0 0 ¯ GnJkn/ln 0

0 − � jG2Ik2/l2 0 ¯ 0 � jG2Ik2/l2


 �9�
nd the stiffness matrix is no longer tri-diagonal. It is worthy to
ote that the proportionality stiffness coefficients �i must be posi-
ive to have a consistent and physical meaning of disk stiffness

atrix.

3.3 Eigenfrequency Calculation. After assembling the iner-
ia and stiffness matrices of the machine, the eigenfrequencies can
e calculated by means of the eigenvalue-eigenvector problem
olution.

As stated by Cramer’s rule, the system of dynamic equations of
he free torsional vibrations of the rotor has nontrivial solutions if
nd only if the determinant of the coefficient matrix is equal to
ero:

det��2�M� + �K�� = 0 �10�
The left-hand side is the characteristic polynomial in the vari-

ble �2; its solutions, in terms of �, are real numbers and represent
he torsional eigenfrequencies of the considered system.

The original and standard torsional model of the machine pre-
ented in Sec. 2 is composed of 164 rotor elements and 52 lumped
isks. It is worthy to note that disks are used for modeling both
he machine blade stages and the additional mass due to the pres-
nce of copper bars in the generator. The sketch of the model is
hown in Fig. 2, where the position of the disks is indicated by a
ashed line with solid dots at the ends. The standard model has
65 DOFs and the calculated eigenfrequencies are shown in Table
and compared to the measured ones �i.e., Table 1�.
Note that while modes 1 and 2 correspond to the first two

xperimental modes of Table 1, there is an eigenmode between
xperimental modes 2 and 3 �i.e., eigenmode 3 in Table 2�, which
as not detected on-field. Thus the fourth and fifth eigenmodes of
able 2 correspond, respectively, to the third and fourth modes
etected during experimental measurements.

The third eigenmode non-identification can be easily explained
y considering that the rotor part, in which the strain gauges are
nstalled �dashed box in Fig. 5�, rotates practically rigidly in
igenmode 3; thus the corresponding experimental mode cannot
e detected using relative deformation measurements on this part.

This is a circumstantial evidence that the standard model is not
ompletely wrong, even if the relative errors of the frequencies
re not negligible, especially for the first mode. Considering the
elative errors, it is worthy to note that the initial model underes-
imates the first three experimental natural frequencies �i.e., eigen-
requencies 1, 2, and 4 in Table 2� whereas overestimates the

Table 2 Model eigenfrequencies

igenmode
Eigenfrequency

�Hz�
Relative error

�%�

Mode 1 8.89 −17.68
Mode 2 27.39 −1.11
Mode 3 82.12 N/A
Mode 4 118.36 −4.16
Mode 5 152.98 +6.23
74501-4 / Vol. 132, JULY 2010
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fourth natural frequency �i.e., eigenfrequency 5 in Table 2�. This
means that on one hand the determination of the eigenfrequencies
is a non-linear problem and on the other hand the updating pro-
cess should be able to modify the model parameters so that their
effects on the first three eigenfrequencies would be opposite to the
fourth one.

4 Model Updating
As discussed in the Introduction, nearly all model updating

methods consider the identified mode shapes or the experimental
frequency response functions �FRFs�. The knowledge and the use
of these quantities guarantee that the updated model is correctly
tuned and has a physical meaning.

In this case, it is impossible to measure experimental mode
shapes or FRFs of the machine. Since the accessible parts during
the operation are few, the only measured modal parameters are the
natural frequencies.

The set of modal parameters � that will be used for the model
tuning process is then composed of four torsional natural frequen-
cies already reported in Table 1 and can expressed in vector terms
as

� = �f1, f2, f3, f4� �11�
With regard to the independent variables of the problem, the

hypothesis is that it is possible to define, on the basis of the
standard modeling, which part of the real machine is badly mod-
eled. As introduced in Sec. 3, the most probable errors could be
the evaluation of the inertia of the bladed parts or of the stiffness
of generator sections. The selection of the disks that will be con-
sidered in the modified model is performed after a sensitivity
analysis.

Finally the constraints of the updating procedure are as follows.

• The differences between the updated eigenvalues and the
natural frequencies are less than those of the initial model.

• Both the values of Jdi
and � j are consistent: They must be

positive.
• Both the values of Jdi

and � j must be meaningful from a
physical point of view: The variation range with respect to
the nominal values will be limited.

Fig. 5 Eigenmode 3—the dashed box indicates the strain

gauge position on the rotor

Transactions of the ASME
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4.1 Sensitivity Analysis. The determination of the most sig-
ificant parameters of this model is performed by checking the
ffect on the eigenfrequencies, calculated with the standard
odel, caused by the variation in the disk inertia and stiffness,

nce the corresponding additional DOF is added.
Anyhow it is easy to understand that it is impossible to take into

onsideration the variation in an eigenfrequency only as a conse-
uence of the variation in a single parameter. The determination of
he eigenfrequencies is a non-linear problem, and each disk can
ause variations in the opposite sign of model eigenfrequencies. A
ossible “rule of thumb” is the introduction of a merit index,
hich reveals the influence that each disk has on each eigenfre-
uency. This influence index is defined per each frequency as

ik,j = max
�
� f�j

�k� − f0j

fmj
− f0j

�, 1 � k � nd, j � � �12�

here f� j

�k� is the jth eigenfrequency obtained for a percentage

ariation � of the independent variable k, f0 j
is the jth eigenfre-

uency of the standard model, and fmj
is the corresponding ex-

erimental frequency.
The terms between parentheses in Eq. �12� represent the ratio

etween the eigenfrequency variation due to a parameter variation
nd the difference between the experimental and the standard
odel frequency values. For a more intuitive visualization the

ndices for each frequency have been summed up.
Since the aim of the study is the implementation of model up-

ating processes that preserve the physical meaning of the starting
odel, the sensitivity analysis will be performed by establishing a

ariation of �20% for the inertia parameters and 0–20% for the
tiffness ones. Moreover the � j coefficients are not considered to
e equal to zero because in this case the eigenvalue problem is
ll-conditioned due to the assembling of matrix �K� in Eq. �9�.

The mass and stiffness global index trends are shown in Fig. 6.
onsidering the values assumed by these indices, the disk set

aken into consideration for the model updating is composed of
he disks located at the 12th �last stage of LP turbine�, 125th,
26th, 127th, 144th, 145th, and 146th �generator� nodes.

With regard to the LP turbine, one could expect that the result
f the optimization will set a low value for the corresponding � j in
rder to decouple the blade row modes from the rotor. The results
or the generator will be opposite in order to consider the torsional
tiffness of the copper bars, and the updated values would respect
he symmetry that the inertias have on the generator.

4.2 Optimization. As it was already said, since the modal

ig. 6 Comprehensive effect of inertia and stiffness
oefficients
arameters obtained by experimental tests are the torsional natural

ournal of Engineering for Gas Turbines and Power
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frequencies, the error function to be minimized will reflect the
objective to fit the calculated eigenfrequencies to the measured
natural frequencies. The fitting could be done in absolute or rela-
tive terms considering absolute or relative errors for each fre-
quency:

	aj
= fmj

− f̃ j, 	rj
=

	aj

fmj

�13�

where f̃ j is the jth eigenfrequency of the model calculated with
the updated parameters. Since the torsional frequencies identified
by means of the experimental tests have different orders of mag-
nitude, the objective function based on the relative error is more
suitable than that on the absolute one. The relative error indeed
assigns the same weight to the difference over each frequency and
this allows tuning properly the model. Being the model updating
process based on the minimization of the error associated with all
the frequencies taken into consideration, the function to be mini-
mized becomes

	r = �
j��

	rj
�14�

The independent variables of the problem are the moment of
inertia and the stiffness coefficients of disks selected in Sec. 4.1;
by defining

�r0 = �
j=1

4

	rj �15�

the value assumed by the error function at the start of the updating
process, the general optimization problem can be set as

min 	r�Jdj
,� j�

subject to 	r 
 �r0,

J̃dj
� 0, 1 � j � m

Jdj
− J̃dj



Jdk

� 0.2, 1 � j � m

0 
 � j � 0.2, 1 � j � m �16�
The problem in Eq. �16� is a mathematical constrained non-

linear optimization, in which the initial values are those contained
in the matrix �Md� for the moments of inertia and in the 0–20%
range for the stiffness coefficients � j. An iterative sequential qua-
dratic programming �SQP� �quasi-Newton� method was adopted
to solve the problem. For the sake of brevity, the complete de-
scription of the algorithm is not reported: Details can be found in
Refs. �12,13�. The optimization process gives the optimal set of
parameters fitting the measured torsional natural frequencies of
the system.

According to the limits imposed during the sensitivity analysis,
the allowed variations for updating parameters were �20% for the
moments of inertia and 0–20% for the stiffness coefficients. The
algorithm stopped when the relative global error of Eq. �14� as-
sumed the value of 2.28%. The eigenfrequencies obtained at the
end of the updating are reported in Table 3. The optimal sets of
parameter corresponding to the minimum found by the updating
algorithm are shown in Figs. 7 and 8.

Note that the number of parameters employed is rather low.
Disk moments of inertia variations are all negative. One of the
most important variations is related to the 12th node, correspond-
ing to the last stage of the LP turbine. This is consistent with the
physical point of view since the uncertainty of inertia model can
be easily related to this stage composed of long blades.

The physical correctness of the optimal stiffness parameters can

be confirmed by noting the strong resemblance among the param-

JULY 2010, Vol. 132 / 074501-5
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ters associated with the generator additional inertia nodes. Stiff-
ess ratios for these nodes tend to the maximum allowed by the
ptimization constraints and their values are about 19.5% of the
orresponding stiffness coefficients of the rotor elements.

The first two updated eigenmodes, normalized with respect to
he maximum amplitude, are shown in Figs. 9 and 10.

In the first eigenmode, as it can be noted in Fig. 9, the addi-
ional disk located in the last stage of the LP turbine appears
ompletely uncoupled from the corresponding rotor element. This
grees with the value assumed by the stiffness coefficient after the
pdating process. The small stiffness coefficient involves the in-
ependence between the rotor and the disk DOFs.

The physical correctness of the previous statement has been
erified by evaluating the stiffness of the disk by means of the
roduct between its updated inertia and the square of the first
igenfrequency of the blade row calculated by means of 3D FEM.

Table 3 Eigenfrequencies after updating

igenmode

Natural
frequency

�Hz�
Eigenfrequency

�Hz�
Relative error

�%�

Mode 1 10.8 10.8 0
Mode 2 27.7 27.066 −2.28
Mode 3 123.5 123.5 0
Mode 4 144.0 144.0 0

Fig. 7 Inertia variation
Fig. 8 Stiffness coefficient

74501-6 / Vol. 132, JULY 2010

aded 02 Jun 2010 to 171.66.16.96. Redistribution subject to ASME
Similar remarks can be deduced from the second torsional eigen-
mode �Fig. 10�: Also at this frequency, the first additional disk can
be considered as uncoupled since its rotation is nearly zero while
the corresponding shaft element along the rotor is characterized
by a negative rotation. For the sake of brevity, third and fourth
updated eigenmodes are not reported in this paper but their shapes
confirm the physical reliability of the performed updating proce-
dure.

5 Conclusion
The aim of this paper is to present torsional model updating of

industrial rotating machinery. Since only the torsional natural fre-
quencies were measured during the experimental tests, the updat-
ing procedure was based on these parameters only. A modified
torsional finite element modeling for the disks was proposed in
order to improve model accuracy. The selection of the updating
parameters was realized by means of a sensitivity analysis based
on the comparison between the experimental frequencies and the
calculated eigenfrequencies.

The updating procedure was performed by imposing constraints
on the variation in updating parameters in order to preserve the
physical meaning of the model.

The updated model shows a good fitting of the measured tor-
sional natural frequencies: The initial total error of 29.18% was
reduced to 2.28%.

Fig. 9 First eigenmode
Fig. 10 Second eigenmode
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The corresponding eigenmodes cannot be compared to the ex-
erimental ones because it was impossible to measure them, but
he analysis of their shape suggests that they are acceptable.
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